Thermal Spraying

Thermal Spray

A common feature of all thermal spray coatings is their lenticular or lamellar grain structure resulting from the rapid solidification of small globules, flattened from striking a cold surface at high velocities. In the simplest terms possible, thermal spray coating involves heating a material, in powder or wire form, to a molten or semi-molten state.

The material is propelled using a stream of gas or compressed air to deposit it, creating a surface structure on a given substrate. The coating material may consist of a single element, but is often an alloy or composite with unique physical properties that are only achievable through the thermal spray process.

Thermal coatings are a highly cost-effective way to add superior performance qualities to a given substrate. Coatings can be metallic, ceramic, plastic or any combination desired to meet a broad range of physical criteria. The coating materials can be applied using different processes.

Thermal coating methods utilise fuel combustion, plasma spray and electric arc delivery systems. Coatings can be applied under standard atmospheric conditions or in specialised, highly controlled atmospheric environments. Coatings can be applied manually or with the automated precision of software-driven robotics. Many industries use our thermal spray coatings to extend product life, increase service performance and reduce production and maintenance costs.

Thermal spray coatings can be the most cost-effective means of protecting substrate surfaces from wear or corrosion. Other primary uses of thermally sprayed coatings include dimensional restoration, maintaining precise clearances, and modifying thermal and electrical properties.

Properties Provided by Thermal Spray Coatings

#TRIBOLOGICAL (WEAR RESISTANCE)

#CORROSION RESISTANCE

#HEAT & OXIDATION RESISTANCE

#ELECTRICAL CONDUCTIVITY OR RESISTIVITY

#ABRADABLE OR ABRASIVE

#FORMING TEXTURED SURFACES

#RESTORATION OF DIMENSION

Open chat
Hello 👋
Can we help you?